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HOW MANY SLOPES IN A POLYGON? 

BY 

R I C H A R D  M A N S F I E L D  

ABSTRACT 

The  compactness  theorem for the predicate calculus is used to prove that if p is 
a prime and s is a positive integer with s _ = l l  or 2s-~-<p and X is a set of 
distinct residues modp ,  there are at least 2 s -  3 distinct residues x + y with 
x ~ y  and x, y E X .  

Consider an arithmetic progression of length s. It is plain that exactly 

s k -  k2+  1 numbers  can be written as the sum of k distinct elements of the 

progression. Furthermore,  in any ordered abelian group, any s-e lement  set has 

at least s k -  k2+  1 such sums. This can easily be proven by induc t ion - - ju s t  

remove  the largest e lement  from an (s + 1)-element set. P. Erd6s has conjec- 

tured that the same theorem holds in every Zp for p pr ime and => sk - k 2 + 1 [1]. 

For fixed k and s we can reformulate  this conjecture in the form 

Vp >= sk - k 2 + 1 Zp ~ q~k.s 

where ~k,s is a first order sentence of group theory. For instance, q~2.3 is 

Vx,, x2, x3 3yl,  y2, y3[(xl ~ x2 A Xl ~ X~ ̂  X~ ~ X3) 

(y, ~ y2 ^ yl ~ y3 ^ y~ ~ y~ A (y~ = X~ + X~ V yl = Xl + X3 

V y, = X2 + X3) A (y2 = XL + X2 V y2 = X~ + X3 V y2 = X2 -t- X3) 

A (y3 = Xl + X2 V y3 = Xl -Jr X3 V y3 = X2 "[- X3))]. 

As we have noted  above, q~k., is true in all ordered abelian groups. But every 

torsion abelian group can be ordered.  Therefore  q~k.~ is true in all torsion free 

abelian groups. Thus by an application of the compactness theorem 

THEOREM 1. For fixed k and s, Erdi~s conjecture is true for all sufficiently large 

primes p. 
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For the rest of this paper we shall consider only the case k = 2. We shall prove 

that in this case the conjecture is true whenever s ___< 11 or p => 2 s-~. 

In organizing the mind, one picture is worth a thousand words, so let us 

picture Zp as the vertices of a regular p-gon. It now follows that two pairs {s, t} 

and {u, v} have the same sum iff the lines s t  and u v  are parallel. (For instance, if 

we put 0 at the top, then the pairs summing to 0 are the horizontal lines.) Thus 

the case k = 2 would be settled if we knew all ways of choosing s points on a 

circle so that the lines joining them have a total of at most 2s - 4 different slopes. 

One way of doing this is trivial. The regular n-gon has exactly n different slopes. 

So for instance any 7 vertices of a regular decagon have exactly ten slopes. This 

can be seen by a pigeonhole argument. A given slope has either 4 chords and 2 

tangents or 5 chords, so in choosing 7 of the 10 vertices, one of these chords must 

have both endpoints selected. Thus all ten slopes will be represented. These 

trivial examples can not lead to a counterexample to Erd6s conjecture, and so 

we will ignore them for the rest of this paper. 

Let us turn to the cases s =< 5. s = 1 and 2 is trivial. For s = 3, any triangle must 

have 3 slopes, s = 4 is slightly more complicated (Fig. 1). Lines AB, AC, AD, 

A 

8 

Fig. 1. 

and BD all cross. So in order  to have no more than 4 slopes, BCtl AD and 

CDI] AB. Thus, since the rectangle is the only parallelogram which can be 

inscribed in a circle, the figure must be a rectangle. No rectangle can be 

embedded into any prime-sided regular polygon, so Erd6s conjecture holds for 

s = 4. Let  us note that there is a whole continuous family of rectangles 

embeddable in a circle. Thus the conditions BCIIAD and CDIIAB do not 

uniquely determine the figure. 

Now let us consider s = 5. There are two cases: either some face is parallel to 

another face or no two faces are parallel. We do the first case first. Figure 2 can 

be drawn, where AB II CD. These lines have six different slopes. Thus CB II DE 
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Fig. 2. 

and A D  II BE.  Now A B  If C D  implies arc A C  = arc B E  + arc E D ;  CB II D E  implies 

arc C D  = arc BE;  A D  II B E  implies arc D E  = arc AB.  Thus  we may  label Fig. 2 

with the arcs a and /3 as shown.  Now A C  HI B E  is impossible  since it implies 

/3 = a +/3, a = 0. Similarly A C  is not  parallel  to DE,  there fore  ACII B D  and 

a =/3,  and we have  drawn 5 of the 6 vert ices of a regular  hexagon.  

Now for  the second case;  no two faces are parallel .  The  figure is d rawn in Fig. 

3. 

A 

D 

Fig. 3. 

All five of these  lines cross so at most  one  face can fail to be  paral lel  to the 

oppos i te  diagonal ,  say AE.  Then  DEH[AC, C D I I B E ,  BCIHAD, and A B  if CE.  

Consequen t ly  arc A E  = arc DC,  arc D E  = arc BC,  arc C D  = arc AB,  arc A E  = 

arc BC. Thus  the figure is a regular  pen tagon ,  and we see that  s = 5 has no  

nontr ivial  cases. 

Le t  us now turn to the case s = 6. T o  carry out  this case, I was forced to rely on 

the vilage idiot, a compute r .  Since the ideas will be  used again, let us go into 

some  detail.  Start  with six points  and fifteen lines (Fig. 4). Ignor ing  opt imiza-  
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Fig. 4. 

tions, we can say that the computer  enumerated all possible equivalence 

relations on this set of fifteen lines which had no more than eight equivalence 

classes and which satisfied the condition that no two crossing lines were in the 

same equivalence class. Each such relation must be checked geometrically. This 

was done as follows. Assume the circle has circumference one and let the six arcs 

be labeled x~, x_~, x3, x4, xs, x6 as shown. Then x~ + x_~ + x3 + x4 + Xs + x6 = 1. Any 

pair of parallel lines leads to a further equation. For instance BC [[ A D  itt x~ = x3 

and BC 1[ AF if[ x~ = x3 + x4 + xs. The computer  wrote out all the equations for 

each possible equivalence relation and solved them. t In almost all cases the 

system was either inconsistent or did not have any positive definite solutions, or 

had unique solutions which were all multiples of either 1/6, 1/7 or 1/8 thus 

leading to a trivial figure. The sole exceptions corresponded to Fig. 5, where 

A B D C  is a rectangle and arc AF = arc FC = arc D E  = arc BE. Since this figure 

contains a rectangle, it can not be embedded  into any prime-sided regular 

polygon and so Erd6s conjecture is true for s = 6. Note  again that this is actually 

a one parameter  family of figures so that the equivalence relation does not 

*The method  of solving the equations was somewhat  specialized. The  equation set was passed 
through three times. On  the first pass all equations of the form x = y were discharged. On  each of the 
next  two passes, all equations of the form x = ay + bz (or x = ay + bz + cu, etc.), where a, b are 
positive integers, was discharged. At  any time if an equation of the form ax + b y  = 0  
(ax + by + cz = 0, etc.), where a, b are positive integers, is found, the case is terminated.  If 0 = 1 is 
found the case is also terminated.  If after two passes all variables except one are gone and we are left 
with ax = 1 where a is a positive integer _-< 2s - 3, the case is dismissed as trivial. In all other  
situations, all relevant information was sent to the printer and checked by hand. In all the hundreds  
of millions of cases done by the computer ,  this procedure was adequate  to completely solve the 
equat ions set. The  program was first written and extensively checked in Level II Basic. The case 
s = 8 required 3~ weeks on a TRS-80. The program was then recoded into PLI. Extensive 
optimizations were added. The  case s = 8 was finally reduced to 104 sec using PLIXCG. Both 
computers  produced identical results for s _-< 8. 
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uniquely determine the figure. Alternatively the linear equation system does not 

have a unique solution. 
The same thing was done for s = 7. The only resulting figure is shown in Fig. 6. 

Here we have not drawn all the lines. A C E G  is again a rectangle so Erd6s 

2o7 
A G 

o7 

5o7 5 ~  

D 

Fig. 6. 

conjecture is true for s = 7. However  A C E G  has arc proportions two to one and 
the figure corresponds to 7 of the vertices of the regular 12-gon. It is also 

represented by the residues {0, - 1, - 4 ,  +--5} mod 12. Note here that the figure is 
uniquely determined by the equivalence relation. In other words the correspond- 

ing linear equation system has a unique solution. 

DEFINITION. A set of points on a circle is unproductive if there are exactly s 

points but no more than 2s - 4 different slopes. It is minimal unproductive if it is 

unproductive but has no unproductive proper subset. 
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LENA.  Let G be a torsion-free abelian group and let X be a minimal 

unproductive subset of G • Z,  (i.e., a minimal set with s elements but <= 2s - 4 

sums). Then provided s >= 5 there is a g E G with X C {g} • Z, .  

PROOF. Suppose otherwise. In order to draw a contradiction it suffices to 

show that X has a proper  subset Y with k elements such that X - Y has at least 

2k fewer sums than X. To do this let G be ordered and choose the largest g such 

that { g } •  has a non-empty intersection with X. Let Y = ( { g } x Z . ) N X .  

There are now three t iresome cases according to whether k = 1, k = 2 or k => 3. 

These are entirely routine and are left to the reader. 

LEMMA. For fixed s and n the same proposition is true when G is replaced by 

any sufficiently large Z~. 

PROOF. Suppose otherwise that there is an increasing sequence (pi : i E oJ) 

and X, C_ Z~, • Z,  such that X, is an s-e lement  minimal unproductive subset of 

Zp, •  not contained in any one coset of Z,. Let G = I I Z p , / ~  for 0-// a 

non-principal ultrafilter on w. Then II (Zp, x Z , ) / ~  is isomorphic to G x Z,  and 

X = II X,/~ would also have exactly s elements. Thus it is easily seen that the 

previous lemma leads to a contradiction. 

THEOREM 2. Any minimal unproductive set of points on a circle with >-_ 5 

elements is uniquely determined by its equivalence relation. 

PROOF. Let P~ , . . . ,  Ps be the minimal unproductive set in counterclockwise 

order. As above let x~ be the arc from P~ to P~+I. We may as well assume 

x, + x2 + �9 �9 �9 + xs = 1. For each pair of lines there is a linear equation such that 

the lines are parallel iff the equation holds. So along with our unproductive set 

there is a system of linear equations. We shall prove the system has a unique 

solution. Using Gaussian elimination, there are {y~,.-.,yk}_-<{xl, . .  ",xs} and 

rational numbers  a~ and b,j such that 

k 

x, = a, + ~ b0y~ 
j = l  

describes all solutions to the system. We must show that all the b,j are zero. For 

y ~ , . . . ,  y~ any set of parameters ,  define x ; =  a~ + Ejb0y~. And P~ = P~, P'i+~ = 

P', + x; (mod 1). Clearly if the y~ are close enough to yj, then the points P; will 

still be distinct, in counterclockwise order, and have exactly the same parallels as 

the P,. 

Let n be the least common denominator  of the a~ and b~j. Now choose p so 

large that: 
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(1) the previous lemma holds for these values of n, s, p ;  

(2) the y~ may be chosen to be multiples of n/p  with the P', being distinct, in 

counterclockwise order  and having exactly the same parallels as the P~, and so 

that for every i, if b,,, bi2,." ", b~k are not all zero then E~=I b i j y ~ 0 .  

Clearly such a p exists. The P~,. �9 P', must also be a minimal unproductive set. 

But each x'i is of the form a'Jn + b'~/p where a'~ and b'~ are integers. Thus the P'~ 

can be regarded as a minimal unproductive subset of Zp •  and thus are 

contained in a single coset of Z,. The x'~ were just differences between p'fs, so all 

x'~ are in Z,. That is to say all b', are zero. By condition (2) this means that all the 

b~j are zero. This is what was to be shown. 

COROLLARY 3. Erd6s conjecture is true for s <-- 11. 

PROOf. We need only consider the equivalence relations whose linear 

equations system has a unique solution. Again by a somewhat tedious calcula- 

tion t these can be enumerated. For 8 =< s _--< 11 there are three possible configura- 

tions. One is the ten residues rood 18, 

{0, 1,2, 6, 7, 8, 11, 12, 13, 17}, 

and the others are the two eIeven residue systems mod 20, 

{0, - 1 ,  +4,  ---5, ---8, -9} ,  {0, ---3, -+4, -+5, -+7, --+8}. 

In the first {17, 2, 8, 11} forms a rectangle with arc-proportions two to one, and in 

the second { --- 1, + 9} form a rectangle with arc-proportions four to one. Neither 

case can be embedded in a prime sided regular polygon. Note that the cases 

s = 7 and s = 10 are the first two cases of an infinite class. If s is of the form 

3n + 4  there is an unproductive, uniquely determined set with 2 s - 4  sums 

among the residues mod 2s - 2. The general pattern can be inferred from s = 10 

(see Fig. 7). The case s = 11 is also undoubtedly part of an infinite class, but 

without seeing the next case, I have not tried to figure out what it is. Do note, 

however, that the third example is obtained from the second by multiplying with 

the unit 3. The second example has the picture shown in Fig. 8. Note that it is the 

union of the counter example for s = 6 with a pentagon. 

COROLLARY 4. Erd6s conjecture is true whenever p >-_ 2 ~-~. 

'The calculation for s = 11 required about 40 hours of CPU time on an IBM 370. I wish to thank 
the Penn State University Computation Center for the cooperation they have shown me on this 
project. 
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PROOF.* It suffices to show that the determinant  of the above linear equation 

system has absolute value < 2 s-~. This is so because if d is the determinant,  the 

solution set can be written with denominator  d and so is included in the d-sided 

regular polygon. Choosing s linearly independent  rows, we see that there is one 

row consisting entirely of ones; the other rows all consist of one block of one 's  

and one block of minus one 's  separated by zero's.  (At least this is true when the 

rows are viewed cyclically.) Now perform column operations. Subtract the 

second column from the first, the third from the second, etc. We are left with a 

matrix having one row which is all zero except for a one in the last column, and 

all other rows having at most two ones and two minus ones in columns other  than 

the last. By an initial column permutat ion we can see to it that at least one of 

these rows has at most three non-zero entries. We now expand by cofactors. The 

new matrix has one row of Euclidean norm at most X/3, all others of norm at 

most 2. Recall Hadamard ' s  Theorem that a determinant  has absolute value 

equal to the volume of the parallelepiped formed f rom the row vectors. Thus the 

absolute value of the determinant  is _-__ the product  of the norms of the rows. In 

our case this means that the determinant  has absolute value =< 2 "-2. X/3 which is 

< 2 ~-l. 
REFERENCES 

1. P. Erd6s and H. Heiibronn, On the addition of residue classes modp, Acta Arith. 9 (1964), 
149-159. 

2. J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18 (1956), 247-254. 
3, H. B. Mann, Addition Theorems, Wiley, New York, 1965. 
4. J. E. Olson, An addition theorem modulo p, J. Combinatorial Theory 5 (1968), 45-52. 
5. J. E. Olson, Sums of sets of group elements, Acta Arith. 28 (1975), 147-156. 

DEPARTMENT OF MATHEMATICS 
PENNSYLVANIA STATE UNIVERSITY 

UNIVERSITY PARK, PA 16802 USA 

'J. E. Olson has since proven a similar theorem with bound 4 s-1 by completely different 
techniques. 


